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Fluctuations and defect-defect correlations in the ordering kinetics of the O„2… model

Gene F. Mazenko and Robert A. Wickham
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 18 July 1996!

The theory of phase ordering kinetics for the O~2! model using the Gaussian auxiliary field approach is
reexamined from two points of view. The effects of fluctuations about the ordering field are included and we
organize the theory such that the auxiliary field correlation function is analytic in the short-scaled distance
(x) expansion. These two points are connected and we find in the refined theory that the divergence at the
origin in the defect-defect correlation functiong̃(x) obtained in the original theory is removed. Modifications
to the order-parameter autocorrelation exponentl are computed.@S1063-651X~97!07001-3#

PACS number~s!: 64.60.2i
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I. INTRODUCTION

The phase-ordering kinetics of systems with continuo
symmetry, such as the O(n) model, is particularly interesting
because of the topological defect structures produced: v
ces and strings forn52 and monopoles forn53 @1#. While
much is understood about the theory of growth kinetics
the O(n) model, there are some interesting unresolved pr
lems associated with the short-distance behavior of
defect-defect correlation functiong̃(x). In the theory devel-
oped in @2# one expresses the order parametercW (R,t) as a
local nonlinear function of an auxiliary fieldmW (R,t) which is
physically interpreted as the distance, at timet, from position
R to the closest defect. One of the physical motivations
introducingmW (R,t) is that it is smootherthan the order-
parameter field. Sharp interfaces or well defined defects
duce a nonanalytic structure in the order-parameter sca
functionF(x) at small-scaled distancesx which, physically,
is responsible for the Porod’s law decay seen scattering
periments@3#. The expectation, however, is that the auxilia
field correlation functionf (x) will be analytic in this same
distance range. In the case of a scalar order-parameter
expectations are supported by theory@2#. However for
n.1, as pointed out in@4#, this is not the case. One finds
weak nonanalytic component inf and, more significantly, for
n52 one can trace this nonanalytic component to an
physical divergence ing̃(x) at smallx @5#. This divergence is
not seen in simulations@6# or experiments@7# for n5d52,
whereg̃(x) apparently approaches zero at the origin.

In this paper we focus on the casen52 and show how
these problems can be resolved by taking seriously the
sumption that the correlations of the auxiliary field are
deed smoother than those of the order parameter. We
that it is possible to rearrange the theory such thatf is ana-
lytic in x if we extend the theory to include fluctuation
about the ordering field and treat the separation between
ordering field and the fluctuation fields carefully. This is a
complished by introducing a new fieldQW which is con-
structed to ensure that the fluctuations are small, while at
same time compensating for the nonanalyticities inf . It is
important to note that we work at zero temperature, so
fluctuations are not thermally driven@8#. Rather, we will see
that the correlations in the fluctuations are slaved to the
551063-651X/97/55~2!/1321~10!/$10.00
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relations in the order parameter. The theory of Ohta, Jasn
and Kawasaki~OJK! @9# basically avoids this entire discus
sion by simply assuming thatf has a Gaussian form@10#.
There is no self-consistent determination off in that theory.

It is well established that for late times following
quench from the disordered to the ordered phase the dyn
ics obey scaling and the system can be described in term
a single growing lengthL(t), which is characteristic of the
spacing between defects. In this scaling regime the ord
parameter correlation function

C~12![^cW ~1!•cW ~2!& ~1.1!

has a universal equal-time scaling form

C~12!5c0
2F~x!, ~1.2!

wherec0 is the magnitudec5ucW u of the order-parameter in
the ordered phase. Here we use the shorthand notation w
1 denotes (R1 ,t1), and define the scaled lengthx as
x5R/L(t) with R[uRu[uR22R1u. It is also well estab-
lished that, in the scaling regime,L(t);tf, where t is the
time after the quench. For the nonconserved models con
ered here the exponentf51/2. Another measurable quantit
is the exponentl governing the decay of order-paramet
autocorrelations, and defined by

C~0,t,t8!;
1

Ll~ t !
for t@t8. ~1.3!

This nontrivial exponent can be computed theoretica
along with the scaling functionF @4#. The predictions for
l are in excellent agreement with simulation results@11,12#.
The theoretical predictions forF are also in good agreemen
with simulations@2#.

The dynamics of the defect structures themselves is a
nable to theoretical treatment@5#. In this paper we shall
mainly be interested in the casen5d, where the defects are
points. Forn5d21 the defects are strings, but the analy
follows closely that for point defects and yields qualitative
similar results. The density of point defects, forn5d, is
defined as
1321 © 1997 The American Physical Society
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1322 55GENE F. MAZENKO AND ROBERT A. WICKHAM
r~1!5(
a

qad„R12xa~ t1!…, ~1.4!

wherexa(t1) is the position at timet1 of the ath point de-
fect, which has a chargeqa . Correlations inr,

G~12![^r~1!r~2!&, ~1.5!

at equal timest15t25t can be shown@5# to decompose into
two parts

G~R,t !5n0~ t !d~R!1g~R,t !. ~1.6!

The first termn0(t) represents defect self-correlations and
just the total unsigned number density of defects at timt.
We will be primarily concerned here with the second te
g(R,t) which measures the correlations between differ
defects. In the scaling regime it can be shown@5# that
n0(t);L2n(t) and thatg(R,t) has the form

g~R,t !5
1

L2n~ t !
g̃~x!, ~1.7!

whereg̃(x) is a universal scaling function.
In Sec. II we present the O(n) model and describe th

mapping between the auxiliary field and the order parame
In Sec. III we discuss the separation of the equation of m
tion into an equation for the evolution of the ordering fie
and an equation for the dynamics of the fluctuations. T
main analytical results of the paper are presented in Sec
where we discuss how the quantitiesF, l, andg̃ are deter-
mined through the solution of a nonlinear eigenvalue pr
lem. In Sec. V we calculate the correlations in the fluctu
tions, assuming that the fluctuation fielduW and the auxiliary
field mW form a set of coupled Gaussian variables. Our n
merical analysis of the new nonlinear eigenvalue problem
presented in Sec. VI and the results are discussed in the
section, which also addresses more general issues that
cate directions for future research.

II. MODEL

We consider the O(n) model, which describes the dynam
ics of a nonconserved,n-component order-parameter fie
cW (1)5„c1(1), . . . ,cn(1)…. To begin we will work with
generaln; however, later we will focus on the interestin
casen52. As in previous work in this area@4#, the dynamics
are modeled using a time-dependent Ginzburg-Landau e
tion

]cW

]t
52G

dF@cW #

dcW
. ~2.1!

We assume that the quench is to zero temperature wher
usual noise term on the right-hand side is zero@13#. G is a
kinetic coefficient andF@cW # is the free energy, assumed
be of the form

F@cW #5E ddr S c2 u¹cW u21V@c# D , ~2.2!
t

r.
-

e
V,

-
-

-
is
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di-

a-

the

where the potentialV@c# is chosen to have O(n) symmetry
and a degenerate ground state withc5c0. Since only these
properties ofV will be important in what follows we need
not be more specific in our choice forV @14#. With a suitable
redefinition of the time and space scales the coefficientG
andc can be set to one and Eq.~2.1! can be written as

]cW

]t
5¹2cW 2

]V@c#

]cW
. ~2.3!

It is believed that our final results are independent of
exact nature of the initial state, provided it is a disorder
state.

The evolution induced by Eq.~2.3! causescW to order and
assume a distribution that is far from Gaussian. It is by n
standard to introduce a mapping between the physical fi
cW and an auxiliary fieldmW with more tractable statistics. W
can decomposecW exactly as

cW 5sW @mW #1uW . ~2.4!

The utility of this decomposition lies in our ability to crea
a consistent theory with the mappingsW chosen to reflect the
defect structure in the problem, anduW constructed to be smal
at late times. ThusuW represents fluctuations about the orde
ing field sW . The precise statistics of the fieldsmW anduW will
be specified below.

The defect structure@15# is naturally incorporated by us
ing the Euler-Lagrange equation for the order-parame
around a static defect in equilibrium,

¹m
2sW @mW #5

]V@sW #

]sW
, ~2.5!

to determine the functional dependence ofsW onmW . The de-
fects are then the nonuniform solutions of Eq.~2.5! which
match on to the uniform solution at infinity. Since we expe
only the lowest-energy defects, having unit topologic
charge, will survive to late times the relevant solutions to E
~2.5! will be of the form

sW @mW #5A~m!m̂ , ~2.6!

wherem5umW u andm̂5mW /m. Thus the interpretation ofmW is
that its magnitude represents the distance away from a de
core and its orientation indicates the direction to the def
core. We expectm, away from the defect cores, to grow a
L in the late-time scaling regime. Inserting Eq.~2.6! into Eq.
~2.5! gives an equation forA,

¹m
2A2

n21

m2 A2V8@A#50, ~2.7!

where the prime indicates a derivative with respect toA. The
boundary conditions areA(0)50,A(`)5c0. An analysis of
Eq. ~2.7! for n.1 and largem yields

A~m!5c0F12
k

m2 1••• G , ~2.8!
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55 1323FLUCTUATIONS AND DEFECT-DEFECT CORRELATIONS . . .
where k5(n21)/V9@c0#.0. The algebraic relaxation o
the order parameter to its ordered value is a distinct fea
of the O(n) model for n.1. In the scalar case (n51) c
relaxes exponentially toc0 away from the defects.

We shall also be interested in the stability matrix defin
by

Wij @sW #[
]2V@sW #

]s i]s j
5V9@A#ŝ i ŝ j1

V8@A#

A
~d i j2ŝ i ŝ j !.

~2.9!

By the definition ofc0 and what we mean by equilibrium w
have

V8@c0#50 ~2.10!

and

V9@c0#[q0
2.0. ~2.11!

These results give

Wij @c0#5q0
2ŝ i ŝ j , ~2.12!

which is purely longitudinal. This reflects the fact that,
equilibrium, the longitudinal fluctuations have a ‘‘mass
q0
2 while the transverse fluctuations, or spin waves, are m
less.

III. SEPARATION OF EQUATIONS OF MOTION

In this section we develop the equations of motion sa
fied by the fieldssW anduW . Let us first define

Hi@cW #[
]V@cW #

]c i
~3.1!

and rewrite the equation of motion~2.3! in the form

]

]t
~sW 1uW !5¹2~sW 1uW !2HW @sW 1uW #. ~3.2!

We then quite generally assume thatsW satisfies the equation
of motion

]sW

]t
5¹2sW 2¹m

2sW 1QW , ~3.3!

whereQW is as yet unspecified. Clearly, subtracting this eq
tion from the equation of motion~3.2! and using Eq.~2.5! we
obtain

]uW

]t
5¹2uW 2HW @sW 1uW #1HW @sW #2QW . ~3.4!

To this point things are quite general since we have
specifiedQW . A key point is thatQW must be chosen such tha
uW does indeed represent a fluctuation. This means that in
scaling regime we can treatuW as small and keep only leadin
powers ofuW in the equations of motion forsW anduW . Equation
~3.4!, to leading order, is then given by
re

d

s-

-

-

t

he

]ui
]t

5¹2ui2Wij @sW #uj2Q i , ~3.5!

where a sum over the indexj is assumed.
We now assume thatQW is a function ofmW only. This

means thatsW satisfies a closed equation, whileuW is slaved by
mW . We will choose the form forQW so that the correlation
function f for mW is analytic for short-scaled distances. As w
shall see this is a rather constrained process.

IV. ANALYSIS OF THE s¢ DEGREES OF FREEDOM

A. Construction of Q¢

If we set QW equal to zero in Eq.~3.3! we obtain the
equation used previously to determine thesW correlations@4#.
This choice decouplessW and uW . The equation foruW would
then separate into a~massless@16#! diffusion equation for the
transverse pieceuW T and an equation for the longitudinal piec
uL with a mass term2q0

2uL . However, the equation forsW

would necessarily lead to nonanalytic behavior inf at short-
scaled distances and ultimately to an unphysical diverge
in g̃(x) at smallx. We must chooseQW so thatf (x) is ana-
lytic for small x. The form we can use forQW is determined
by the following observations:~i! QW must be odd under
mW→2mW . ~ii ! QW must scale asO(L22) in the scaling regime
if it is to compensate for the terms in the equation of moti
which lead to the nonanalyticities inf . This will also allow
us to treatuW as a fluctuation since it will implyuW ;L22.

It is not easy to construct a variety of functions ofmW
which are independent and satisfy~i! and ~ii !. We propose
the general form

QW 5
v0

L2~ t !
sW 1(

l51

lmax

v l@¹mW #2~ l21!¹m
2sW , ~4.1!

where@¹mW #25( i51
d (a51

n @] ima# and all of thev l , l>0 are
assumed to be ofO(1). One canthink of including other
quantities like (c0

22sW 2)sW but these, in the scaling regime

are equivalent to¹m
2sW . It is interesting to note, using th

definition ~2.5! for ¹m
2sW , thatQW is longitudinal.

For the purposes of this paper we will only consider co
structing f (x) to be analytic through terms ofO(x4). To
satisfy this requirement it is sufficient to setl max52 in Eq.
~4.1!. The equation forsW ~3.3! is then of the form

BW 50W , ~4.2!

where we define, for later convenience,

BW [] tsW 2¹2sW 1¹m
2sW 2

v0

L2~ t !
sW 2v1¹m

2sW 2v2@¹mW #2¹m
2sW .

~4.3!

B. The Gaussian approximation

To complete the definition of the model one must spec
the form of the probability distribution for the auxiliary fiel
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mW . ForcingsW to satisfy the exact equation of motion~4.2! is
tantamount to solving the problem exactly, and will det
mine a probability distribution formW which is complicated
and extremely difficult for purposes of computatio
Progress can be made if one imposes the weaker const

^BW ~1!•sW ~2!&50. ~4.4!

This equation allows one to insure thatBW (1) is reasonably
small at late times but gives one the flexibility to choose
suitable probability distribution. The simplest choice is
Gaussian probability distribution formW with the correlation
functionC0(12) explicitly defined through

^mi~1!mj~2!&5d i j C0~12!. ~4.5!

The system is assumed to be statistically isotropic and
mogeneous soC0(12) is invariant under interchange of i
spatial indices. For future reference we also define the o
point correlation function

S0~1!5C0~11! ~4.6!

and the normalized correlation function

f ~12!5
C0~12!

S̄0~12!
, ~4.7!

with S̄0(12)5AS0(1)S0(2). As discussed above it is ex
pected that bothC0 andS0 grow asL2 at late times. The
Gaussian approximation, which has been successful in
scribing the correlations in these systems, forms the bas
almost all present analytical treatments of phase-orde
problems@2,4#. Efforts to go beyond to Gaussian approxim
tion are defined in@17,18#.

The functional dependence ofC(12) andg̃(x) on f can
be derived without reference to the dynamics contained
Eq. ~4.4!. Using Eqs.~2.4!, ~2.6!, and ~2.8! C(12) can be
written to leading order in 1/L

C~12!5c0
2^m̂~1!•m̂~2!&5c0

2F~12!. ~4.8!

Assuming Gaussian statistics formW we obtain@4,19#

F~12!5
n f~12!

2p
B2S 12 , n11

2 DFS 12 , 12 ; n12

2
; f 2~12! D ,

~4.9!

whereB is the beta function andF is the hypergeometric
function. Within the Gaussian theory,g̃(x) is given by@5#

g̃~x!5n! FhxG
n21 ]h

]x
, ~4.10!

with h52g f 8/2p and g51/A12 f 2. The defect density is
given by

n0~ t !5
n!

2npn/2G~11n/2!
F S0

~2!

nS0~ t !
Gn/2 ~4.11!

with
-

int

a

o-

e-

e-
of
g
-

in

S0
~2!5

1

n
^@¹mW #2&. ~4.12!

C. Order-parameter correlations

With the specification of the probability distribution fo
mW the constraint~4.4! leads to an equation that allows one
compute correlations in the order parametersW . The quantity
S0
(2) ~4.12!, which will later appear in the definition of the
length scale and in the formula for the autocorrelation ex
nentl, is determined through condition~4.4!, with 251

1

2
] t1^s

W 2~1!&2^sW ~1!•¹1
2sW ~1!&2

v0

L2~ t1!
^sW 2~1!&

1~12v1!^sW ~1!•¹m
2sW ~1!&

2v2^sW ~1!•@¹1mW ~1!#2¹m
2sW ~1!&50. ~4.13!

Equation ~4.13! can be simplified by using the following
identities, true for Gaussian averages,

^sW ~1!•¹1
2sW ~1!&52S0

~2!^¹m•@sW ~1!•¹msW ~1!#&

1S0
~2!^sW ~1!•¹m

2sW ~1!& , ~4.14!

^sW ~1!•@¹1mW ~1!#2¹m
2sW ~1!&5nS0

~2!^sW ~1!•¹m
2sW ~1!&,

~4.15!

and observing that, at late times, the dominant term in
~4.13! is

^sW ~1!•¹m
2sW ~1!&52

c0
2

2S0~1!
lnS0~1! for n52

52
c0
2

S0~1!

n21

n22
for n.2. ~4.16!

Evaluating Eq.~4.13! to leading order in 1/L one has

S0
~2!5

12v1

122m~n22!v0 /p~n21!1nv2
, ~4.17!

where we have defined the scaling length

L2~ t !5
pS0~ t !

2mS0
~2! 54t. ~4.18!

Note that forn52 the term withv0 does not appear in
S0
(2) because it is dominated by theO(L22lnL) terms in Eq.

~4.13!. There is a further simplification of Eq.~4.17! for
n52 since later we will have to setv112S0

(2)v250 to en-

sure that the correlations inuW remain finite. With this relation
we have

S0
~2!51 for n52, ~4.19!

which is the value forS0
(2) obtained previously for alln when

QW 50W .
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Equation~4.4! directly determines the time evolution o
the two-point order-parameter correlations and is given
plicitly by

F] t12¹1
22

v0

L2~ t1!
G^sW ~1!•sW ~2!&1~12v1!^¹m

2sW ~1!•sW ~2!&

2v2^¹m
2sW ~1!@¹1mW ~1!#2•sW ~2!&50. ~4.20!

Equation~4.20! can be reexpressed as an equation for
order-parameter correlation functionF ~4.9! by means of the
following identities:

^¹m
2sW ~1!@¹1mW ~1!#2•sW ~2!&

5nS0
~2!^¹m

2sW ~1!•sW ~2!&1@¹1C0~12!#
2

3^¹m
2sW ~1!•¹m

2sW ~2!&, ~4.21!

^¹m
2sW ~1!•sW ~2!&5

2c0
2

S0~1!
f ] fF, ~4.22!

^¹m
2sW ~1!•¹m

2sW ~2!&5
c0
2

S̄0
2 ~ f ] fF1 f 2] f

2F!, ~4.23!

where we use the shorthand notationf5 f (12), F5F(12),
and] fF5]F/] f , etc. Equation~4.20! becomes

F] t12¹1
22

v0

L2~ t1!
GF2

12v12nS0
~2!v2

S0~1!
f ] fF

2v2@¹1f #
2@ f ] fF1 f 2] f

2F#50, ~4.24!

which is the starting point for the evaluation of the two qua
tities of interest here: the autocorrelation exponentl ~1.3!
and the late-time scaling form forF.

For times t1@t2 both F and f are small. In this limit
~4.24! becomes a linear equation forF and, following the
treatment in@4,11#, with the definition~4.18!, l can be de-
termined as

l5d2
p

4m

12v12nS0
~2!v2

S0
~2! 2

v0

2
. ~4.25!

If one knowsv0 , v1 , v2, andm one can determinel. These
quantities can be found from an analysis of the equal-t
correlations, to which we now turn.

To examine the equal-time order-parameter correlati
in the late-time scaling regime we sett15t25t and write Eq.
~4.24! in terms of the scaled distancex. To leading order in
1/L we have

xW•¹xF1¹x
2F1v0F1

p

2m

12v12nS0
~2!v2

S0
~2! f ] fF

1v2@¹xf #
2@ f ] fF1 f 2] f

2F#50. ~4.26!

The calculation of the scaling form forF reduces to the
solution of the nonlinear eigenvalue problem~4.26! with the
eigenvaluem. The eigenvalue is selected by finding nume
cally the solution of Eq.~4.26! which satisfies the analyti
-

e

-

e

s

-

cally determined boundary behavior at both large and sm
x. The new aspect to the problem is the presence of
unknownsv0 , v1, andv2, a consequence of the incorpor
tion of fluctuations into the model. Forn52 these constants
play the role of counterterms that cancel out the smax
nonanalyticities in the normalized auxiliary field correlatio
function f . This procedure fixesv0 , v1, andv2 in terms of
m andd.

For largex bothF and f are small and Eq.~4.26! can be
linearized. In this regime the solution to Eq.~4.26! is

F;xd22le2x2/2. ~4.27!

The result for the exponentd22l appears to be robust. Un
til now, we have derived results valid for arbitraryn.1.
However, the primary goal of this paper is to examine t
O~2! model, where there are known qualitative discrepanc
with simulation data. With this in mind, we now examine th
small-x behavior of the scaling equation~4.26! for the case
n52. For smallx ~4.26! admits the following general expan
sion for f :

f511 f 2x
2H 11

K2

lnx F11OS 1

lnxD G J
1 f 4x

4H 11
K4

lnx F11OS 1

lnxD G J 1O~x6!. ~4.28!

Nonanalyticities appear as a result of the nonzeroK2 and
K4 coefficients multiplying factors of 1/lnx. The nonzero
K2 coefficient is particularly important since it is responsib
for the divergence of the defect-defect correlation function
small x.

The coefficients of the expansion~4.28! can be deter-
mined by examining~4.26! order by order at smallx. Bal-
ancing terms atO(lnx) gives

f 252
p

4md
. ~4.29!

This relation betweenf 2 and m is the same one that wa
found in the original theory@4#. This equivalence is a con
sequence of the simplifications mentioned previously E
~4.19! that occur forn52. At O(1) we have a equation
relatingv0 , v2, andK2

v052 f 2~11dK21v2!. ~4.30!

As discussed above, the constantv1522 v2 for n52. If
we work with v05v15v250 then Eq. ~4.30! implies
K2521/d. This is simply the Gaussian model examin
previously @4#, whose nonzero value forK2 results in the
divergent small-x behavior of the defect-defect correlatio
function g̃(x).

Now, however, we can insist that, atO(x2), f is analytic
and enforceK250. This choice produces the following rela
tion betweenv0 andv2:

v052 f 2~11v2!. ~4.31!
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The small-x divergence in the defect-defect correlation fun
tion is now eliminated. The leading correction to theO(x2)
term in f is then theO(x4) term with a coefficient

f 45
d131v2

2~d12!
~ f 2!

22
f 2~21v0!

4~d12!
. ~4.32!

We can go further and insist thatf is analytic at smallx up
to O(x4). EnforcingK450 allows one to arrive at a compli
cated expression forv2 in terms ofm andd only.

In Sec. VI we will consider enforcingK250 through
various choices for thev l and we will numerically solve the
associated eigenvalue problem. Before doing this though
complete our discussion of the theory by examining in de
the correlations of the fluctuations and their relationship
the order-parameter correlations. In the process, we will
tablish the important constraint on thev l parameters dis-
cussed earlier.

V. ANALYSIS OF FLUCTUATION CORRELATIONS

In addition to order-parameter correlations the theory a
completely describes correlations in the fluctuation fielduW .
There are two types of equal-time fluctuation correlatio
that are of interest to us. The first describes cross correlat
between thesW anduW fields and is defined as

Cu0~12!5^uW ~R1 ,t !•sW ~R2 ,t !&. ~5.1!

The second describes correlations of the fluctuation fi
with itself and is given by

d i j Cuu~12!5^ui~R1 ,t !uj~R2 ,t !&. ~5.2!

As we will see later these quantities are closely related in
scaling regime. One can deduce equations of motion for b
Cu0 andCuu by using the equations of motion~3.3! and~3.5!
for sW anduW . For equal times one has

]

]t
Cu0~12!5¹1

2Cu0~12!2^Wij ~1!uj~1!s i~2!&2CQ0~12!

1¹2
2Cu0~12!2Cu2~12!1CuQ~12! ~5.3!

and

1

2

]

]t
Cuu~12!5¹1

2Cuu~12!2
1

n
^Wij ~1!uj~1!ui~2!&

2
1

n
CQu~12!, ~5.4!

where in the last equation we have used the translation
variance in space to combine two equivalent terms. We h
also defined

CQ0~12!5^QW ~1!•sW ~2!&, ~5.5!

Cu2~12!5^uW ~1!•¹m
2sW ~2!&, ~5.6!

CuQ~12!5^uW ~1!•QW ~2!&. ~5.7!
-
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We can solve Eqs.~5.3! and ~5.4! to determine the correla
tions for the fluctuation fielduW if we make the additional
assumption thatuW is also a Gaussian field. In particular, w
assume thatmW anduW are coupled Gaussian fields satisfyin

^mi~1!G~mW ,uW !&5C0~13!K d

dmi~3!
G~mW ,uW !L

1Cmu~13!K d

dui~3!
G~mW ,uW !L , ~5.8!

and

^ui~1!G~mW ,uW !&5Cum~13!K d

dmi~3!
G~mW ,uW !L

1Cuu~13!K d

dui~3!
G~mW ,uW !L , ~5.9!

whereG is a general function ofmW anduW , Cum is defined as

d i j Cum~12!5^ui~1!mj~2!&, ~5.10!

and integrations overR3 and t3 are implied. Using these
identities all correlation functions depending onmW anduW are
determined in terms ofC0 ,Cum , andCuu . Thus, we will see
that Eqs. ~5.3! and ~5.4! can be expressed in terms o
Cu0 ,Cuu and averages over functions ofmW alone. This is the
first step in determining Eqs.~5.1! and~5.2!. The second step
is to evaluate the averages overmW , which can all be ex-
pressed in terms ofC0, a quantity known from our analysi
in Sec. IV. The final step is to analyze the equations resul
from Eqs.~5.3! and~5.4! in the late-time scaling regime an
extract the scaling functions.

We begin by expressing all of the correlation functio
involving a power ofuW which appear in Eqs.~5.3! and~5.4!
in terms ofCu0(12), Cuu(12), and averages overmW . Using
the identity~5.9! we have

Cu0~12!5Cum~12!M1 , ~5.11!

Cu2~12!5Cum~12!M3 , ~5.12!

CuQ~12!5Cum~12!V1 , ~5.13!

^Wij ~1!uj~1!s i~2!&5Cum~11!W1~12!1Cum~12!W2~12!,
~5.14!

^Wij ~1!uj~1!ui~2!&5Cuu~12!V21Cum~21!Cum~11!V3 ,
~5.15!

where we define

M15^¹m•sW ~1!&, ~5.16!

M35^¹m•¹m
2sW ~1!&, ~5.17!

V15
v0

L2
M11(

l51

lmax

v l^¹m•¹m
2sW ~1!@¹1mW ~1!#2~ l21!&,

~5.18!
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V25^Wii ~1!&, ~5.19!

V35^¹m
i ¹m

j Wi j ~1!&, ~5.20!

W1~12!5^@¹m
j Wi j ~1!#s i~2!&, ~5.21!

W2~12!5^Wij ~1!¹m
j s i~2!&. ~5.22!

We see from Eq.~5.11! thatCum can be eliminated in favo
of Cu0 in Eqs.~5.12!–~5.15!. In terms of these various aux
iliary functions, Eqs.~5.3! and ~5.4! become

]

]t
Cu0~12!5¹1

2Cu0~12!2Cu0~11!W1~12!M1
21

2Cu0~12!W2~12!M1
212CQ0~12!

1¹2
2Cu0~12!2Cu0~12!M3M1

21

1Cu0~12!V1M1
21 ~5.23!

and

1

2

]

]t
Cuu~12!5¹1

2Cuu~12!2
1

n
Cuu~12!V22

1

n
Cu0~12!

3@Cu0~11!V3M1
221V1M1

21#. ~5.24!

The next step is to compute the averages overmW Eqs.
~5.16!–~5.22! in the scaling regime. We begin with theone-
point averages. Except forV1, which involves spatial gradi-
ents, these can all be evaluated using

^A@mW #&5E dnx

~2pS0!
n/2e

2x2/~2S0!A@x#. ~5.25!

It is straightforward to show that

M15c0S 2

S0~ t !
D 1/2 GS n11

2 D
GS n2D

~5.26!

and

M352
1

S0~ t !
M1 . ~5.27!

Turning toV2 we see rather trivially from the form of th
stability matrix given by Eq.~2.9! that

V25q0
21O~L22!, ~5.28!

with a lnL multiplying the correction term forn52. This
quantity serves as amassfor the longitudinal fluctuations
and dominates their determination. ForV3 a brief manipula-
tion produces the simple result

V35~n21!
q0
2

S0~ t !
. ~5.29!

The last local quantityV1, involves averages over spati
derivatives. The key point in handling such quantities is t
 t

^mk(1)¹ imj (1)&50. One can then rather easily derive th
recursion relation, valid forl.0,

^~¹mW !2lG&5nS0
~2!F11

2~ l21!

nd G^~¹mW !2~ l21!G&

~5.30!

for a general local functionG@mW #. With this relation we can
evaluateV1, up to thev2 term

V15M1F v0

L2~ t !
2

v1

S0~ t !
2
nS0

~2!v2

S0~ t !
G . ~5.31!

Turning to thetwo-pointquantitiesW1 andW2 it is easy to
show, using the symmetry properties of the order parame
that in the scaling regime these reduce to

W1~12!5~n21!q0
2c0K ŝ~1!•ŝ~2!

m~1! L ~5.32!

and

W2~12!5q0
2c0K 1

m~2!
$12@ŝ~1!•ŝ~2!#2%L . ~5.33!

These are new averages to be evaluated. Hereafter, we
work exclusively with n52. In this caseW1(12) and
W2(12) can be evaluated as

W1~12!5q0
2c0S p

2S0
D 1/21f ~12A12 f 2!, ~5.34!

while

W2~12!5q0
2c0S p

2S0
D 1/2 A12 f 2

11A12 f 2
. ~5.35!

We are now in a position to evaluateCu0 andCuu in the
scaling regime, and to relate them toF throughCQ0. From
the definition~4.1! of QW we see that the scalingAnsatzfor
CQ0 should have the form

CQ05
c0
2

L2
FQ~x!, ~5.36!

where, after explicit evaluation,

FQ5v0F2
p

2mS0
~2! ~v112S0

~2!v2! f ] fF

1v2@¹xf #
2@ f ] fF1 f 2] f

2F#. ~5.37!

Looking at the determining equations~5.23! and ~5.24! we
easily see that, as a consequence of Eq.~5.36!, we must take
u;L22 to leading order. We therefore write

Cu0~12!5
c0
2

L2
Fu~x! ~5.38!

and
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Cuu~12!5
c0
2

L4
Fuu~x!. ~5.39!

With theseAnsätze ~5.23! can be written as

Fu~0!
1

f
~12A12 f 2!1Fu~x!

A12 f 2

11A12 f 2
52

1

q0
2FQ~x!

~5.40!

to leading order, while Eq.~5.24! becomes

Fuu~x!1
2

p
Fu~0!Fu~x!

52
1

q0
2 Fv02

p

2mS0
~2! ~v112S0

~2!v2!GFu~x!.

~5.41!

We see that the quantityFu(0) enters into these equations.
this quantity is to be finite then we see thatFQ(x) cannot
blow up asx→0. Sincef ] fF does blow up asx→0 we must
choose

v112S0
~2!v250 , ~5.42!

which fixesv1 in terms ofv2 and tells us, using Eq.~4.17!,
thatS0

(2)51 for n52, even in the presence of these pert
bations. We then find that

Fu~0!5
2v2f 22v0

q0
2 52

2 f 2~11dK2!

q0
2 , ~5.43!

where Eq.~4.30! has been used. We then have the final
sults

Fu~x!52
g

q0
2 $v0@~11A12 f 2!F2 f #12v2f 2f

1v2~11A12 f 2!@¹xf ~x!#2@ f ] fF1 f 2] f
2F#%

~5.44!

and

Fuu~x!52
1

q0
2 Fv01

2q0
2

p
Fu~0!GFu~x!. ~5.45!

Inspection of Eqs.~5.43!–~5.45! show that in the original
theory @4# Fu(x)5Fuu(x)50, as expected. From the defin
tions~5.2! and~5.39! we must haveFuu(0)>0. In the theory
with only v0Þ0 we have

Fuu~0!5
v0
2

q0
4 S 12

2

p D ~5.46!

which is positive. However, ifv050 Eq. ~5.45! implies

Fuu~0!52
2

p
@Fu~0!#2 ~5.47!

which is negative. Thus within thel max52 approximation it
is necessary to havev0Þ0 in order to have a physica
-

-

theory. For more generalQW , one must look to the numerica
solution of Eq.~4.26! to answer the question of the sign o
Fuu(0).

Equations~5.44! and ~5.45! explicitly show how correla-
tions in theuW field are slaved to those of the order paramet
The universality in Eqs.~5.44! and ~5.45! is evident, up to
the nonuniversal overall factor of 1/q0

4, which characterizes
the flatness of the equilibrium minimum in the potential a
sets the scale of the fluctuations.

VI. NUMERICAL ANALYSIS OF THE NONLINEAR
EIGENVALUE PROBLEM

The eigenvalue problem posed by Eq.~4.26!, subject to
the boundary conditions at small and largex outlined above,
has to be solved numerically. A fourth-order Runge-Ku
integrator is used to integrate Eq.~4.26! with initial condi-
tions given by an analytic small-x expansion tox50.0001.
The eigenvaluem is adjusted until the solution matches on
the Gaussian decay~4.27! at the largest distances. This
now a standard procedure and is essentially the same as
used in@4#. We examine the O~2! model in two and three
spatial dimensions.

In the original theory@4# QW 50W and the selection of the
eigenvalue depended on only the conditions outlined abo
In that theoryK2521/d, which lead to an unsatisfactor
nonanalyticity in the small-x behavior off (x) and ultimately
to an unphysical divergence ing̃(x) at smallx. In the present
theory we can chooseQW so as to eliminate the leadin
nonanalyticities and remove the unphysical divergence. E
choice represents a separate eigenvalue problem. The
plest choice is to keep only the first term inQW by setting
v052 f 2 andv l50 for l.0. For d52 the solution to this
eigenvalue problem hasv0521.4620 . . . , while for d53
one hasv0521.3450 . . . .Another choice forQW is to elimi-
nate the first term, but keep the next two by setti
v050,v152,v2521 andv l50 for l.2. As mentioned
in the preceding section, this choice has the unfortunate c
sequence of renderingFuu(0) negative. Both these theorie
haveK250 andK4Þ0. If we requiref (x) to be analytic up
to O(x4) we must choose all ofv0 , v1, andv2 to be non-
zero, following the prescription outlined in Sec. IV to ensu
thatK25K450. The solution to this eigenvalue problem h
v0522.6004 . . . , v250.419 14 . . . for d52 and
v0522.3438 . . . , v250.456 75 . . . for d53.

Table I contains the eigenvaluesm obtained from these
theories. The autocorrelation exponents are shown in Ta
II. The scaling forms for the order-parameter correlati
functionsF from the various theories are compared in Fig
for the O~2! model in two dimensions. The three dimension

TABLE I. Values for the eigenvaluem from the various theories
~in all theoriesv1522 v2).

v05v250
v0Þ0,
v250

v050,
v2521

v0 ,
v2Þ0

d52 0.948 58 0.537 21 0.760 33 0.428 63
d53 0.568 37 0.389 31 0.514 34 0.325 44
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results forF are similar, and are not shown. The defect
defect correlation functiong̃(x) ~4.10! is calculated from our
numerically determined form forf (x). The results for the
correlations between vortices (n5d52) obtained from the
various theories are compared in Fig. 2. Simulation resul
@6#, which are scaled to give the best fit to the original theor
@4# at largex, are shown for comparison. Finally, the scaling
function Fuu ~5.45! is computed using our knowledge ofF
and f . The results for the theory withv0Þ0 andv2Þ0 are
shown in Fig. 3 for two and three spatial dimensions. For th
theory with justv0Þ0 the behavior ofFuu is similar to that
shown.

VII. DISCUSSION

It is noteworthy that the scaling solution for we find here
for F retains the same qualitative features seen in@4#. The
differences between theF’s can be attributed mainly to a
rescaling of the length scale. Since there is always som

FIG. 1. Scaling functionF(x) for the order-parameter correla-
tions in two dimensions. From bottom to top, atx51, the curves
correspond to the theory withv0Þ0 andv2Þ0; the theory with
only v0Þ0; the unmodified theory@4#; the theory withv050 and
v2Þ0. In all theoriesv1522 v2.

FIG. 2. Scaling functiong̃(x) for the defect-defect correlations
in two dimensions. From bottom to top atx50 the solid curves
correspond to the theory withv0Þ0 andv2Þ0; the theory with
only v0Þ0; the theory withv050 andv2Þ0, the unmodified
theory @4# ~diverging!. In all theoriesv1522 v2. The dots repre-
sent the simulation results@6# for the two dimensional O~2! model.
-

ts
y

e

e

arbitrariness in the choice of length scale when comparin
simulation data to theory, we expect that our new results f
F will fit the simulation data well after rescaling. To our
knowledge, simulation results for the autocorrelation expo
nentl of the O~2! model exist only for two spatial dimen-
sions @12#, where it is found thatl51.171. We see from
Table II that the original theory@4# is already in excellent
agreement with the simulations on this point. It is not sur
prising then that the modified theory makes worse predi
tions for l than the original theory. The introduction ofQW
was not expected to be in any sense a small perturbation
trend whichis counter to our expectations is that the discrep
ancy between the value forl from simulations and the value
obtained in the theory seems to increase as one includ
more terms inQW . It may still turn out that the inclusion of
higher order terms inl in QW does lead to improvement. This
appears to be a straightforward but tedious calculation. It
also interesting to note that, for the theory withv050 and
v2Þ0, the prediction forl violates a proposed@20# lower
boundl.d/2. Despite these problems with the quantitativ
values obtained forl, there is qualitative improvement in
g̃(x) since the small-x divergence forn5d52 seen in the
original theory is removed. The value ofg̃(0) in all the
modified theories is too low when compared with simula
tions and this point suggests that some fine-tuning of th
theory is necessary. Finally, our results forFuu obey the
necessary conditionFuu(0).0 for two of our choices of
QW . We also see that the strength of the fluctuations, chara
terized byFuu(0), increases in lower dimensions, as one
might expect.

We see that the inclusion of fluctuations allows us to ren

TABLE II. Values for the autocorrelation exponentl from the
various theories~in all theoriesv1522 v2).

v05v250
v0Þ0,
v250

v050,
v2521

v0 ,
v2Þ0

d52 1.1720 1.2690 0.967 03 1.4678
d53 1.6182 1.6550 1.4730 1.7585

FIG. 3. Scaling function for the fluctuation correlations for the
theory with v0Þ0,v2Þ0, andv1522 v2. At x50 the lower
curve is the result for three dimensions and the upper curve is t
result for two dimensions.
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der the correlation functionf of the auxiliary field analytic
and we have constructed such a solution up toO(x4). This,
in turn, cures the short-distance divergence ing̃. The theory,
at the Gaussian level, appears to be in better qualita
shape given our development here, however it is at the
pense of proper quantitative agreement for the nonequ
rium exponentl. There is evidence@18# that the inclusion of
post-Gaussian corrections lowers the value ofl. Thus we
hope that the tendency for the fluctuations to increasel will
be balanced by the introduction of post-Gaussian terms
sulting in a value forl in reasonable agreement with sim
lations. We also hope that post-Gaussian corrections will
duce the magnitude ofg̃(0). It appears that the procedure w
. D

ze

s-
e
x-
b-

e-

e-

introduce here leads to a qualitatively more consist
theory. However it is also clear that it is unlikely that one c
have such a theory and quantitative estimates for expon
within the Gaussian approximation. One should proceed
look at post-Gaussian theories.
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