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Fluctuations and defect-defect correlations in the ordering kinetics of the @) model

Gene F. Mazenko and Robert A. Wickham
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, lllinois 60637
(Received 18 July 1996

The theory of phase ordering kinetics for thé2Dmodel using the Gaussian auxiliary field approach is
reexamined from two points of view. The effects of fluctuations about the ordering field are included and we
organize the theory such that the auxiliary field correlation function is analytic in the short-scaled distance
(x) expansion. These two points are connected and we find in the refined theory that the divergence at the
origin in the defect-defect correlation functigifx) obtained in the original theory is removed. Modifications
to the order-parameter autocorrelation exponemtre computed.S1063-651X97)07001-3

PACS numbe(s): 64.60—i

I. INTRODUCTION relations in the order parameter. The theory of Ohta, Jasnow,
and Kawasaki{OJK) [9] basically avoids this entire discus-
The phase-ordering kinetics of systems with continuoussion by simply assuming thdt has a Gaussian forifiL0].
symmetry, such as the ®( model, is particularly interesting There is no self-consistent determinationfah that theory.
because of the topological defect structures produced: vorti- It is well established that for late times following a
ces and strings fon=2 and monopoles fon=3 [1]. While quench from the disordered to the ordered phase the dynam-
much is understood about the theory of growth kinetics forics obey scaling and the system can be described in terms of
the OM) model, there are some interesting unresolved proba single growing length (t), which is characteristic of the
lems associated with the short-distance behavior of thépacing between defects. In this scaling regime the order-
defect-defect correlation functidi(x). In the theory devel- parameter correlation function
oped in[2] one expresses the order parameﬁéR,t) as a R R
local nonlinear function of an auxiliary fielt(R,t) which is C(12)=(y(1)- ¥(2)) (1.9
physically interpreted as the distance, at timom position
R to the closest defect. One of the physical motivations forhas a universal equal-time scaling form

introducing rﬁ(R,t) is that it is smootherthan the order-
parameter field. Sharp interfaces or well defined defects pro- C(12= lpé]—'(x), (1.2
duce a nonanalytic structure in the order-parameter scaling
function A(x) at small-scaled distanceswhich, physically,
is responsible for the Porod’s law decay seen scattering e
perimentqd 3]. The expectation, however, is that the auxiliary1 denotes R,.t,), and define the scaled length as
field correlation functionf(x) will be analytic in this same pLotl 2T . 9

. x=R/L(t) with R=|R|=|R,—Ry|. It is also well estab-
distance range. In the case of a scalar order-parameter the“s

. . . — ¢ .
expectations are supported by thed®]. However for _§1ed that, in the scaling regimé(t)~1¥, wheret is the .
) ' L ' time after the quench. For the nonconserved models consid-
n>1, as pointed out if4], this is not the case. One finds a

weak nonanalytic component fnrand, more significantly, for ered here the exponegt=1/2. Another measurable quantity

n=2 one can trace this nonanalytic component to an une the exponend. goveming the decay of order-parameter

physical divergence ig(x) at smallx [5]. This divergence is autocorrelations, and defined by
not seen in simulationks] or experimentg7] for n=d=2,
whereg(x) apparently approaches zero at the origin. COt,t')~

In this paper we focus on the case=2 and show how w LA(t)
these problems can be resolved by taking seriously the as-
sumption that the correlations of the auxiliary field are in-This nontrivial exponent can be computed theoretically,
deed smoother than those of the order parameter. We finglong with the scaling functio [4]. The predictions for
that it is possible to rearrange the theory such thetana- )\ are in excellent agreement with simulation res{dt$,17.
lytic in x if we extend the theory to include fluctuations The theoretical predictions foF are also in good agreement
about the ordering field and treat the separation between thgith simulations[2].
ordering field and the fluctuation fields carefully. This is ac-  The dynamics of the defect structures themselves is ame-
complished by introducing a new fiel® which is con- nable to theoretical treatmefi§]. In this paper we shall
structed to ensure that the fluctuations are small, while at theainly be interested in the case=d, where the defects are
same time compensating for the nonanalyticitied int is  points. Forn=d—1 the defects are strings, but the analysis
important to note that we work at zero temperature, so théollows closely that for point defects and yields qualitatively
fluctuations are not thermally drivd8]. Rather, we will see similar results. The density of point defects, ford, is
that the correlations in the fluctuations are slaved to the cordefined as

where is the magnitudeﬁ=|<Z| of the order-parameter in
the ordered phase. Here we use the shorthand notation where

for t>t’. (1.3
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where the potentia¥/[ ] is chosen to have @) symmetry
p(1)=2 48R~ X4(11)), (1.4 and a degenerate ground state wjth . Since only these
“ properties ofV will be important in what follows we need
wherex,(t,) is the position at time, of the ath point de- not be more specific in our choice f9r[14]. With a suitable

fect, which has a charge, . Correlations inp, redefinition of the time and space scales the_ coefficiénts
andc can be set to one and E@.1) can be written as

G(12=(p(1)p(2)), (1.5 -
ap - IN[yY]
at equal times,=t,=t can be showfi5] to decompose into Y ‘ﬂ_a—{z- 2.3
two parts
It is believed that our final results are independent of the
G(R,t)=ng(t) s(R)+g(Rt). (1.6

exact nature of the initial state, provided it is a disordered
state.

The first termngy(t) represents defect self-correlations and is o -
o(1) rep The evolution induced by Eq2.3) causes) to order and

just the total unsigned number density of defects at time S : : )
We will be primarily concerned here with the second term@SSume a distribution that is far from Gaussian. It is by now
g(R,t) which measures the correlations between differenftandard to introduce a mapping between the physical field
defects. In the scaling regime it can be shof that  and an auxiliary fieldn with more tractable statistics. We
no(t)~L~"(t) and thatg(R,t) has the form can decomposé exactly as

. g j=olm]+d. 2.4
IR = {n 78X, (1.7 y=olml+u (2.4

The utility of this decomposition lies in our ability to create
whereg(x) is a universal scaling function. a consistent theory with the mappiﬁgchosen to reflect the

In Sec. Il we present the @f model and describe the defect structure in the problem, anctonstructed to be small

mapping between the auxiliary field and the order parametety |a¢e times. Thus represents fluctuations about the order-
In Sec. Ill we discuss the separation of the equation of mo-

tion into an equation for the evolution of the ordering field Ing fleldig.d'l'gelp\:\(/ause statistics of the fields andu will
and an equation for the dynamics of the fluctuations. Thé)e.?ﬁe% ? tet? .t rE15] is naturally incorporated b i
main analytical results of the paper are presented in Sec. I\ € defect strucl s haturally incorporated by us

where we discuss how the quantiti&s \, andg are deter- ihg the Euler-Lagrange equation for the order-parameter

mined through the solution of a nonlinear eigenvalue prob—around a static defect in equilibrium,

lem. In Sec. V we calculate the correlations in the fluctua- aV[&]
tions, assuming that the fluctuation fialdand the auxiliary V2o[m]= ——, (2.5
J

m
field m form a set of coupled Gaussian variables. Our nu- o

merical analysis of the new nonlinear eigenvalue problem is ) i - -
presented in Sec. VI and the results are discussed in the finil determine the functional dependencesobn m. The de-

section, which also addresses more general issues that indRCtS are then the nonuniform solutions of Eg.5 which
cate directions for future research. match on to the uniform solution at infinity. Since we expect

only the lowest-energy defects, having unit topological
charge, will survive to late times the relevant solutions to Eq.
(2.5) will be of the form

1. MODEL

We consider the @) model, which describes the dynam- .. R
ics of a nonconservedy-component order-parameter field o m]=A(m)m, (2.9
J/(l)z(dfl(l), .. ,(1)). To begin we will work with - " - ) , 5
generaln; however, later we will focus on the interesting Wherem=|m| andm=m/m. Thus the interpretation af is
casen=2. As in previous work in this arda], the dynamics that its me}gnltu'de represen';s the dlstanpe away from a defect
are modeled using a time-dependent Ginzburg-Landau equ&°'e and its orientation indicates the direction to the defect

tion core. We expecitn, away from the defect cores, to grow as
L in the late-time scaling regime. Inserting Eg.6) into Eq.
a_zZ: B 5,;[{;] o (2.5 gives an equation foA,
ot 8 ' ,  n-1
VmA_ —mTA_V/[A]:O, (27)

We assume that the quench is to zero temperature where the

usual noise term on the right-hand side is zEt8]. I' is @ \here the prime indicates a derivative with respectdhe
kinetic coefficient and[ ¢] is the free energy, assumed to boundary conditions ar&(0)=0, A(x) = i,. An analysis of
be of the form Eq. (2.7 for n>1 and largem yields

, (2.9

F[«Z]=fddr(§|wlz+vw]), (2.2 A<m>=¢o[1—$z+~~
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where k=(n—1)/V"[]>0. The algebraic relaxation of

the order parameter to its ordered value is a distinct feature

of the O() model forn>1. In the scalar casenE1) ¢
relaxes exponentially tgy, away from the defects.
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&Ui

ot —Vzui—Wij[(;]Uj_@

(3.5

where a sum over the indgxis assumed.

We shall also be interested in the stability matrix defined \ve now assume thad is a function ofm only. This

by

V[ o]
&O'i&()'j

V'TA]
A

—0i0j).

(2.9

W[ o]= =V'[A]gio;+ (8

By the definition ofy;y and what we mean by equilibrium we
have

V'[$0]=0 (2.10
and
V'[$o]=05>0. (2.1
These results give
W[ ¢l =505, (2.12

which is purely longitudinal. This reflects the fact that, in .
equmbnum the longitudinal fluctuations have a “mass”

means that- satisfies a closed equation, whilés slaved by
m. We will choose the form foil® so that the correlation

functionf for m is analytic for short-scaled distances. As we
shall see this is a rather constrained process.

IV. ANALYSIS OF THE o DEGREES OF FREEDOM
A. Construction of @

If we set ® equal to zero in Eq(3.3) we obtain the
equation used previously to determine theorrelationg 4].

This choice decouples andu. The equation fou would
then separate into@assles§16]) diffusion equation for the

transverse piecéT and an equation for the longitudinal piece

u_ with a mass term- qguL. However, the equation for
would necessarily lead to nonanalytic behaviof iat short-
scaled distances and ultimately to an unphysical divergence

in g(x) at smallx. We must choos® so thatf(x) is ana-

g3 while the transverse fluctuations, or spin waves, are masdytic for small x. The form we can use fo is determined

less.

IIl. SEPARATION OF EQUATIONS OF MOTION

In this section we develop the equations of motion satis-
fied by the fieldsc andu. Let us first define

. aV[Y]
Hili1=— (3.0
and rewrite the equation of motid2.3) in the form
J I S
—(o+u)=V3o+u)—H[o+u]. (3.2

ot

We then quite generally assume thasatisfies the equation
of motion

(90’

2
+6
r =V25— VmO' 0,

(3.3

where® is as yet unspecified. Clearly, subtracting this equa-

tion from the equation of motio(8.2) and using Eq(2.5) we
obtain

(3’U

— =VA-Hlo+Ul+H[o]-6.

(3.9

To this pomt things are qune general since we have not

speufled@. A key point is that® must be chosen such that

by the followmg observations(i) ® must be odd under
m— —m. (i) ® must scale a®(L~?) in the scaling regime
if it is to compensate for the terms in the equation of motion
which lead to the nonanalyticities ih This will also allow
us to treatu as a fluctuation since it will implyi~L =2,

It is not easy to construct a variety of functions of
which are independent and satigfy and (ii). We propose
the general form

|max
>

0= %ﬁZ o [Vm]2-Vy2 5 (4.2)

where[Vm]?=39_,3"_.[4,m,] and all of thew,, =0 are
assumed to be o®(1) One canthink of including other
quantities like (/1(2)—52)5 but these, in the scaling regime,
are equivalent toVﬁqc;. It is interesting to note, using the
definition (2.5) for V2o, that® is longitudinal.
For the purposes of this paper we will only consider con-

structing f(x) to be analytic through terms dd(x*). To
satisfy this requirement it is sufficient to dgf,,=2 in Eq.

(4.1). The equation fowr (3.3 is then of the form

B=0, (4.2)

where we define, for later convenience,

B= 0t0' V0'+V2m0' o~ lema wz[Vm]ZVﬁ]U

4.3

2(t)

u does indeed represent a fluctuation. This means that in the

scaling regime we can treatas small and keep only leading

powers ofu in the equations of motion far andu. Equation
(3.4), to leading order, is then given by

B. The Gaussian approximation

To complete the definition of the model one must specify
the form of the probability distribution for the auxiliary field
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m. Forcingo to satisfy the exact equation of motiéh.2) is 1 -
tantamount to solving the problem exactly, and will deter- S§,2>=ﬁ<[Vm]2>. (4.12
mine a probability distribution fom which is complicated
and extremely difficult for purposes of computation.
Progress can be made if one imposes the weaker constraint
With the specification of the probability distribution for
(B(1)-0(2))=0. (4.4  m the constraint4.4) leads to an equation that allows one to

. ) ) - ) compute correlations in the order parametefThe quantity
This equation allows one to insure thR{1) is reasonably «(2) (4.12), which will later appear in the definition of the

small at late tim'e;s bqt g'ives' one the flexibility to C'hOO.Se 3ength scale and in the formula for the autocorrelation expo-
suitable probability distribution. The simplest choice is @nenth. is determined through conditio.4), with 2=1

Gaussian probability distribution fan with the correlation

C. Order-parameter correlations

function Cy(12) explicitly defined through 1 . - - wy -
’ 39{ 7% (D) = (1) Vio(D) = 255 (1)
(m;i(1)m;(2)) = 6;; Co(12). (4.9
The system is assumed to be statistically isotropic and ho- +(1-wy)(o(1)- Vao(1))
mogeneous s€y(12) is invariant under interchange of its - - 92 >
spatial indices. For future reference we also define the one- —wy(o(1)-[Vim(1)]7V0(1))=0. (4.13

oint correlation function
P Equation (4.13 can be simplified by using the following

Sp(1)=Co(11) (4.6) identities, true for Gaussian averages,
and the normalized correlation function (0(1)-V20(1))=—SUV - [0(1)- Vo (1) ]
2(0(1)-V3a(1)), 4.1
f(12=&(12), @1 +S857(a(1)-Viyo(1)) (4.14
So(12)

. (a(1)-[Vim(D)PVEe(1) =nS(a(1)- Vaa(1),
with Sp(12)=/Sy(1)Se(2). As discussed above it is ex- (4.19
pected that bottC, and S, grow asL? at late times. The
Gaussian approximation, which has been successful in d

éa_nd observing that, at late times, the dominant term in Eq.
scribing the correlations in these systems, forms the basis 6?’13 IS

almost all present analytical treatments of phase-ordering 2
problemd2,4]. Efforts to go beyond to Gaussian approxima- (1) V2(1)) = — 0 |1nS(1) for n=2
tion are defined if17,18. (o(1)-Vao(1) 250(1) So(1)
The functional dependence @f(12) andg(x) on f can 2
be derived without reference to the dynamics contained in _ Yo n-1 for n>2. (4.16
Eq. (4.4). Using Egs.(2.4), (2.6), and (2.8) C(12) can be So(1) n=2

written to leading order in 1/ _ _ _
Evaluating Eq.4.13 to leading order in 1/ one has

C(12=yx(M(1)-M(2)=y5F(12). (4.8
2) 1_ w1
. . s . S = . (417
Assuming Gaussian statistics for we obtain[4,19] 1-2u(n—=2)wg/m(n—1)+nw,
~nf(12 _,/1 n+l} (1 1 nt2 , where we have defined the scaling length
t
(4.9 Loy W 4.19

2uSy?
whereB is the beta function ané is the hypergeometric ,u,S<0
function. Within the Gaussian theorg(x) is given by[5] Note that forn=2 the term withw, does not appear in

-1 S{?) because it is dominated by ti@(L ~2InL) terms in Eq.
(4.10 (4.13. There is a further simplification of Eq4.17) for
n=2 since later we will have to sei; +2S?w,=0 to en-

with h=— yf'/27 and y=1/J1—f2. The defect density is Sure that the correlations inremain finite. With this relation
given by we have

! { @

No(t) = Sr—mmrr
2 T'(1+n/2
w1+ n2) [nS() which is the value foS{?) obtained previously for ath when
with ©=0.

h

9(x)=n! <

51

S'=1 forn=2, (4.19

n/2
} (4.11
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Equation(4.4) directly determines the time evolution of cally determined boundary behavior at both large and small
the two-point order-parameter correlations and is given exx. The new aspect to the problem is the presence of the
plicitly by unknownsw,, i, andw,, a consequence of the incorpora-

tion of fluctuations into the model. For=2 these constants

1) (2D + (1— V25(1)- (2 play the ro]r—; of_ counterterm§ that cgncel put the smz_all—
(0(D)-0(2)+ (1= 0)(Vno(1) o(2)) nonanalyticities in the normalized auxiliary field correlation

o
{fﬂl_vi_ T2t
L=(t1)
5 - . 5 = function f. This procedure fixe®y, i, andw, in terms of
—wx(Vio(D[Vim(1)]%- 0(2))=0. (420 4 andd.
For largex both F andf are small and Eq4.26 can be

Equation(4.20 can be reexpressed as an equation for theﬁnearized. In this regime the solution to E@.26) is

order-parameter correlation functidn(4.9) by means of the
following identities: P yd-2h g2 4.27
(Vaa(DIVim(1)]*- o(2))

The result for the exponemnt— 2\ appears to be robust. Un-

=nSP(Vio(1)-0(2))+[V1Co(12)1? til now, we have derived results valid for arbitranz1.
However, the primary goal of this paper is to examine the
X(V2a(1)-V2a(2)), (4.2)  O(2) model, where there are known qualitative discrepancies
with simulation data. With this in mind, we now examine the
. . — Y2 smallx behavior of the scaling equatidd.26) for the case
(Vio(1)-0(2))= S(1) fosF, (422 n=2.For smallx (4.26 admits the following general expan-
sion for f:
<V2&(1)-V2&(2)>:ﬁ(fa F+1292F), (4.23 K, 1
m m g2 o ' f=1+1f,x 1+ —11+0 W)
where we use the shorthand notatibn f(12), F=F(12), . K, .
and d; F= 9.1 df, etc. Equation4.20 becomes X 1+ | 1+ O[ || +O(X).  (4.28
2 o 1_‘1)1_”3)2)‘02 .
atl—vl— 7 F— 1 fo;F Nonanalyticities appear as a result of the nonzikroand
(tz) So(1) K, coefficients multiplying factors of 1//a The nonzero
— w [ V12 f;F+ F252F] =0, (4.24 K coefficient is particularly important since it is responsible

for the divergence of the defect-defect correlation function at
which is the starting point for the evaluation of the two quan-small x.
tities of interest here: the autocorrelation exponentl.3) The coefficients of the expansio@.28 can be deter-
and the late-time scaling form foF. mined by examining4.26) order by order at smak. Bal-
For timest;>t, both F and f are small. In this limit ancing terms aO(Inx) gives
(4.24 becomes a linear equation fgf and, following the

treatment in4,11], with the definition(4.18, N\ can be de- T
. fpmm 4.29
termined as 4ud
o 2)
N=d— 11%<—;$’W_ @0 (4.25  This relation betweerf, and u is the same one that was
4p Sy 2 found in the original theory4]. This equivalence is a con-

) sequence of the simplifications mentioned previously Eq.
If one knowswg, w4, w,, andu one can determink. These (4.19 that occur forn=2. At O(1) we have a equation
guantities can be found from an analysis of the equal'tim‘?elating wg, wo, andK,

correlations, to which we now turn.

To examine the equal-time order-parameter correlations
in the late-time scaling regime we det=t,=t and write Eq.
(4.29 in terms of the scaled distange To leading order in

As discussed above, the constast=—2 w, for n=2. If

1/L we have : LT
we work with wp=w;=w,=0 then Eg.(4.30 implies
) , 7 1—w;-nSPw, K2=_— 1/d. This is simply the Gaussian model e_xamined
XV F+ViF+ wOJ—'+2— 2 fosF previously [4], whose nonzero value fdk, results in the
K So divergent smalk behavior of the defect-defect correlation
+ o[V f 12 fo; F+ 1252F]=0. (4.26  functiong(x).

Now, however, we can insist that, @(x?), f is analytic
The calculation of the scaling form fafF reduces to the and enforce&K,=0. This choice produces the following rela-
solution of the nonlinear eigenvalue probléh26 with the  tion betweenw, and w,:
eigenvalueu. The eigenvalue is selected by finding numeri-
cally the solution of Eq(4.26 which satisfies the analyti- wo=2f5(1+ wy). (4.31
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The smallx divergence in the defect-defect correlation func-We can solve Eqg5.3) and (5.4) to determine the correla-

tion is now eliminated. The leading correction to €x?)  tions for the fluctuation fieldi if we make the additional

term inf is then theO(x") term with a coefficient assumption thatl is also a Gaussian field. In particular, we
d+3+w, ., fa(2+wp) assume tham andu are coupled Gaussian fields satisfying

fa= 2(d+2) *'? 4(d+2) - (4.32 o S
. _ _ <mi(1)g(mru)>zco(13)< ———G(m, u)>
We can go further and insist thétis analytic at smalk up om;(3)
to O(x*). EnforcingK =0 allows one to arrive at a compli- S .
cated expression fap, in terms ofu andd only. +Cmu(13)<mg(m,u)>, (5.8
In Sec. VI we will consider enforcindK,=0 through !
various choices for the, and we will numerically solve the 54
associated eigenvalue problem. Before doing this though we
complete our discussion of the theory by examining in detail .. S
the correlations of the fluctuations and their relationship to <Ui(1)9(m,u)>=cum(l3)< m (3)Q(m U)>
the order-parameter correlations. In the process, we will es-

tablish the important constraint on thg parameters dis-

cussed earlier. +Cuu(13) I(3)Q(m ), (5.9
V. ANALYSIS OF FLUCTUATION CORRELATIONS whereg is a general function afh andu, C,pis defined as
In addition to order-parameter correlations the theory also - Cum(12) = (u;(1)m;(2)) (5.10

completely describes correlations in the fluctuation field
There are two types of equal-time fluctuation correlationsand integrations oveR; and t; are implied. Using these
that are of interest to us. The first describes cross correlationgentities all correlation functions depending wnandu are

between ther andu fields and is defined as determined in terms o,,C,,,, andC,,. Thus, we will see
R R that Eqgs. (5.3 and (5.4 can be expressed in terms of
Cuo(12=(u(Ry1,t)- o(Ry,1)). (5.0 c,Cy, and averages over functions mfalone. This is the

first step in determining Eq¢5.1) and(5 2). The second step

The second describes correlations of the fluctuation flelds to evaluate the averages ovéx which can all be ex-
with itself and is given by vaiu verag whi X

pressed in terms o, a quantity known from our analysis
Cuu(12=(Ui(Ry, U (Ry,1)). (5.2) in Sec. IV. The final step is to analyze the equations resulting
from Egs.(5.3) and(5.4) in the late-time scaling regime and
As we will see later these quantities are closely related in th@xtract the scaling functions.
scaling regime. One can deduce equations of motion for both We begin by expressing all of the correlation functions
Cyo andC,,, by using the equations of moti@8.3) and(3.5  involving a power ofu which appear in Eqg5.3) and (5.4)

for o andu. For equal times one has in terms ofC,0(12), C,,(12), and averages ovet. Using
the identity(5.9) we have
Cuo(12)=ViCyo(12) —(W;;(1)u;j(1)5i(2)) — Ceo(12) Cuo(12=Cyr(12My, (5.11)
+V5Cu0(12) — Cp(12) +Cyp(12) (5.3 Cu2(12)=Cyr(12Ms, (5.12
and Cuo(12)=Cyn(12Q4, (513
1 . - (2))= +
Eﬁcuu(lz)zvicuu(lz)_ﬁ(Wij(l)uj(l)ui(Z» <WI](1)UJ(1)0'|(2)> Cum(1D)W4(12) Cum(lZ)WZ((é_Z}_,A].)
1 (Wi (D)ui(Dui(2))=Cy(12)Q,+ C;(2) Cym(1D) Q 3,
— HC@)U(lZ)! (54) 1] ] | uu um um (515
where in the last equation we have used the translation invhere we define

variance in space to combine two equivalent terms. We have .
also defined M1=(V a(1)), (5.19
Coo(12=(6(1)-(2)), (5.5 M3=(V - V2a(1)), (5.17)

_ - 2 - ImaX
CU2(12)_<U(1)Vm0-(2)>’ (56) Ql LZM +2 w|<V VZ cr(l)[Vlm(l)]ZI 1>

Cuo(12=(u(1)-6(2)). (5.7) (5.18



Q,=(W; (1)), (5.19

Q3= (Vi VWi (1)), (5.20
Wi(12) =([ Vi W;;(1)]ei(2)), (5.20
W,(12)=(W;j(1)VEoi(2)). (5.22

We see from Eq(5.1)) thatC,,, can be eliminated in favor
of Co in Egs.(5.12—(5.19. In terms of these various aux-
iliary functions, Eqs(5.3) and(5.4) become

4 .
—1 Cuo(12)=ViCyo(12) = Cyo( LY W;(12)M; *

—Cuo(12Wy(12)M; 1= Cgo(12)
+V3C,0(12)— Cyo(12MM
+Cyuo(12QM;? (5.23

and

d 1 1
5 5t Cuu(12=ViCyy(12) — ~Cu(12) Q27— ~Cuo(12)

X[Cuo(1D) QM2+ QM Y. (5.29

The next step is to compute the averages oﬁerEqs.
(5.16—(5.22 in the scaling regime. We begin with tlome-

point averages. Except fdR;, which involves spatial gradi-
ents, these can all be evaluated using

- d" 2
A = | g me VAL (629

It is straightforward to show that

n+1
2 el
2
and
B 1
M3——mM1. (5.2

Turning to Q), we see rather trivially from the form of the
stability matrix given by Eq(2.9 that
Q=g+ O(L7?), (5.29
with a InL multiplying the correction term fon=2. This
guantity serves as massfor the longitudinal fluctuations

and dominates their determination. Rog a brief manipula-
tion produces the simple result

9

So(t)

The last local quantity),, involves averages over spatial

Qs=(n—1) (5.29
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(M (1)Vim;(1))=0. One can then rather easily derive the
recursion relation, valid for>0,

2(1-1)

+
1 nd

(Ym)?G)=nsg?

}<<Vrﬁ>2<'”e>
(5.30

for a general local functiofﬁ[rﬁ]. With this relation we can
evaluate(),, up to thew, term

o 0 N o
L) So(t)  So(t)
Turning to thetwo-pointquantitiesW; andW, it is easy to

show, using the symmetry properties of the order parameter,
that in the scaling regime these reduce to

01=M1[ } (5.31)

o(1)-5(2)

w1<12>=(n—1>q%¢o<Tl)

> (5.32

and

1 AL
W,(12)= qg¢o<m{1— [o(1)- 0(2)]2}> . (533

These are new averages to be evaluated. Hereafter, we shall
work exclusively with n=2. In this caseW;(12) and
W,(12) can be evaluated as

T 1/21
W1<12>=q3¢o(ﬁ) F1-41-15), (534

while

J1—f2
1+1—f2

We are now in a position to evaluat®,, and C,, in the
scaling regime, and to relate them fothroughCgq. From

the definition(4.1) of O we see that the scalingnsatzfor
Ceo should have the form

5 ar 1/2
Wz(lz):%‘//o(ﬁ) (5.39

2

0
C@)OZFF(X)7 (5.36
where, after explicit evaluation,
Fo=0oF— — (w1+25% wp) o, F
c) o ZMSE)Z) 1 2)T0s
+ o[ V12 f o, F+ £202F]. (5.39

Looking at the determining equatiori§.23 and (5.24 we
easily see that, as a consequence of(E@®6), we must take
u~L 2 to leading order. We therefore write

2

Cuo(12)= %FU(X) (5.38

derivatives. The key point in handling such quantities is tha&and
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lﬂg TABLE I. Values for the eigenvalug from the various theories
Cuu(12= FFUU(X)- (5.39 (in all theoriesw;=—2 w,).

wo# 0, wo=0, wg,

With theseAnsaze (5.23 can be written as o= wy=0 0, =0 0y —1 0,20

0.948 58 0.537 21 0.760 33 0.428 63
0.568 37 0.38931 0.514 34 0.325 44

1 V1-12 1 d
Fu(o)?(l_\/l_f )+Fu(X)m=—q—gF(X) q

(5.40

to leading order, while Eq(5.24) becomes theory. For more generﬁ, one must look to the numerical

2 solution of Eq.(4.26 to answer the question of the sign of
Fuu(x)"';Fu(O)Fu(X) Fuu(o)-
Equations(5.44 and (5.45 explicitly show how correla-
1 T 2) tions in theu field are slaved to those of the order parameter.
- ag Wo™ W(wﬁzgo w2) |Fy(X). The universality in Eqs(5.44) and (5.45 is evident, up to
the nonuniversal overall factor ofdg, which characterizes
(54D the flatness of the equilibrium minimum in the potential and

We see that the quantify,(0) enters into these equations. If sets the scale of the fluctuations.

this quantity is to be finite then we see thag(x) cannot

blow up asx— 0. Sincef 9; F does blow up ag— 0 we must VI. NUMERICAL ANALYSIS OF THE NONLINEAR
choose EIGENVALUE PROBLEM
01+25Pw,=0, (5.42 The eigenvalue problem posed by Hg.26), subject to

the boundary conditions at small and lasgeutlined above,
which fixesw; in terms ofw, and tells us, using Eq4.17,  has to be solved numerically. A fourth-order Runge-Kutta
that Si'=1 for n=2, even in the presence of these pertur-integrator is used to integrate E@.26 with initial condi-
bations. We then find that tions given by an analytic smat-expansion tax=0.0001.

The eigenvaluegu is adjusted until the solution matches onto

F,(0)= 2“’2f2_“’0:_ 2f5(1+dKy) (5.43 the Gaussian decaf4.27) at the largest distances. This is
Y qcz, qg ' now a standard procedure and is essentially the same as that

used in[4]. We examine the @) model in two and three

where Eq.(4.30 has been used. We then have the final respatial dimensions.

sults In the original theory[4] ®=0 and the selection of the
eigenvalue depended on only the conditions outlined above.
Fux)=— _yz{wo[(1+ VI—f2) F— ]+ 2w,f,f In that theoryK,= —1/d, which lead to an unsatisfactory
Yo nonanalyticity in the smalk behavior off (x) and ultimately

+wy(1+ W)[fo(x)]z[faf]—'Jrfzafzf]} to an unphysical diverge;nce@?(x) at smal!x. In the presept
theory we can choos® so as to eliminate the leading
(5.44 nonanalyticities and remove the unphysical divergence. Each
choice represents a separate eigenvalue problem. The sim-
plest choice is to keep only the first term (%) by setting
wo=2f, and w;=0 for|>0. Ford=2 the solution to this
Fux). (549  eigenvalue problem has,=—1.462 ..., while for d=3
one haswy=—1.343 . . . . Another choice fo® is to elimi-
Inspection of Eqs(5.43—(5.45 show that in the original nate the first term, but keep the next two by setting
theory[4] F,(x)=F,,(x)=0, as expected. From the defini- @o=0, »1=2, w,=—1 andw;=0 forI>2. As mentioned
tions (5.2 and(5.39 we must havé=,,,(0)=0. In the theory in the preceding section, this choice has the unfortunate con-

and

205
a)0+ ? FU(O)

1
Fuu(x): - ag

with only wo#0 we have sequence of rendering,,(0) negative. Both these theories
haveK,=0 andK,#0. If we requiref(x) to be analytic up
w% 2 to O(x* we must choose all obg, w;, andw, to be non-

Ful(0)= q_g( 1- _) (5.46 zero, following the prescription outlined in Sec. IV to ensure

thatK,=K,=0. The solution to this eigenvalue problem has

which is positive. However, ifo,=0 Eq. (5.45 implies wo=—2.600}..., 0,=04194... for d=2 and
wp=—2.3438..., w,=04565... ford=3.

2 5 Table | contains the eigenvalugs obtained from these
Fuu(0)=~- ;[Fu(o)] (5.47 theories. The autocorrelation exponents are shown in Table

Il. The scaling forms for the order-parameter correlation

which is negative. Thus within thie,,,=2 approximation it  functionsF from the various theories are compared in Fig. 1

is necessary to havey,#0 in order to have a physical for the O2) model in two dimensions. The three dimensional
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FIG. 1. Scaling function(x) for the order-parameter correla- FIG. 3. Scaling function for the fluctuation correlations for the

tions in two dimensions. From bottom to top,>at 1, the curves  th€0ry with wo#0, w;#0, and w,=—2 w,. At x=0 the lower
correspond to the theory with,#0 and w,+0; the theory with ~ Curve is the regult for_ three dimensions and the upper curve is the
only we#0; the unmodified theorf4]; the theory withw,=0 and ~ "esult for two dimensions.
w,7#0. In all theoriesw;=—2 w,.

arbitrariness in the choice of length scale when comparing
results for F are similar, and are not shown. The defect-simulation data to theory, we expect that our new results for
defect correlation functiog(x) (4.10 is calculated from our F will fit the simulation data well after rescaling. To our
numerically determined form fof(x). The results for the knowledge, simulation results for the autocorrelation expo-
correlations between vortices € d=2) obtained from the nent\ of the Q2) model exist only for two spatial dimen-
various theories are compared in Fig. 2. Simulation resultsions[12], where it is found thah=1.171. We see from
[6], which are scaled to give the best fit to the original theoryTable Il that the original theory4] is already in excellent
[4] at largex, are shown for comparison. Finally, the scaling agreement with the simulations on this point. It is not sur-
function F,,, (5.45 is computed using our knowledge #f  prising then that the modified theory makes worse predic-
andf. The results for the theory witk,#0 andw,#0 are  tions for A than the original theory. The introduction 6F
shown in Fig. 3 for two and three spatial dimensions. For thavas not expected to be in any sense a small perturbation. A
theory with justwy# 0 the behavior of, is similar to that  trend whichis counter to our expectations is that the discrep-
shown. ancy between the value far from simulations and the value

obtained in the theory seems to increase as one includes

VII. DISCUSSION more terms in®. It may still turn out that the inclusion of

higher order terms ith in O does lead to improvement. This
appears to be a straightforward but tedious calculation. It is
also interesting to note that, for the theory with=0 and
w,# 0, the prediction fo\ violates a proposef0] lower
Bound\>d/2. Despite these problems with the quantitative
values obtained foi, there is qualitative improvement in
. 9(x) since the smalk divergence fom=d=2 seen in the
original theory is removed. The value ©f(0) in all the
modified theories is too low when compared with simula-
tions and this point suggests that some fine-tuning of the
theory is necessary. Finally, our results fef, obey the
- necessary conditiof,,(0)>0 for two of our choices of
©. We also see that the strength of the fluctuations, charac-
terized byF,,(0), increases in lower dimensions, as one
might expect.

We see that the inclusion of fluctuations allows us to ren-

It is noteworthy that the scaling solution for we find here
for F retains the same qualitative features seefdin The
differences between th&s can be attributed mainly to a
rescaling of the length scale. Since there is always som

0.05

0.00 ¢

g(z) -oo0s

-0.10

-0.15 1 1

0 1 2 3
z TABLE Il. Values for the autocorrelation exponexitfrom the
various theoriegin all theoriesw;=—2 w,).

_ FIG. 2 chling functiorg(x) for the defect-defect cprrelations wo#0, 0o=0, wo,
in two dimensions. From bpttom to top at=0 the solid curves ©o=wy=0 0,=0 wy=—1 0, %0
correspond to the theory witkhy#0 and w,+# 0; the theory with
only wy#0; the theory withwy=0 and w,#0, the unmodified d=2 1.1720 1.2690 0.967 03 1.4678
theory[4] (diverging. In all theoriesw;=—2 w,. The dots repre- d=3 1.6182 1.6550 1.4730 1.7585

sent the simulation resul{§] for the two dimensional @) model.
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der the correlation functior of the auxiliary field analytic introduce here leads to a qualitatively more consistent
and we have constructed such a solution u@ta®*). This,  theory. However it is also clear that it is unlikely that one can
in turn, cures the short-distance divergenc@.ihe theory, have such a theory and quantitative estimates for exponents
at the Gaussian level, appears to be in better qualitativaithin the Gaussian approximation. One should proceed to
shape given our development here, however it is at the eXook at post-Gaussian theories.

pense of proper quantitative agreement for the nonequilib-
rium exponend. There is evidencEl8] that the inclusion of
post-Gaussian corrections lowers the valuexofThus we
hope that the tendency for the fluctuations to increasell

be balanced by the introduction of post-Gaussian terms, re- This work was supported in part by the MRSEC Program
sulting in a value foi in reasonable agreement with simu- of the National Science Foundation under Award No. DMR-
lations. We also hope that post-Gaussian corrections will re9400379. R.A.W. gratefully acknowledges support from the
duce the magnitude @(0). It appears that the procedure we NSERC of Canada.
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